Let #u=1-x# so that #du = -dx# and #x=1-u#. Then
#\int x(1-x)^n\ dx=\int (u-1)u^{n}\ du=\int (u^{n+1}-u^{n})\ du#
#=\frac{u^{n+2}}{n+2}-\frac{u^{n+1}}{n+1}+C#
#=\frac{(1-x)^{n+2}}{n+2}-\frac{(1-x)^{n+1}}{n+1}+C#
when #n!=-1# and #n!=-2#.
When #n=-1#, we get:
#\int \frac{x}{1-x}\ dx=\int (\frac{1}{1-x}-1)\ dx=-\ln|1-x|-x+C#
When #n=-2#, we get:
#\int \frac{x}{(1-x)^2}\ dx#
#=\int (-\frac{1}{1-x}+\frac{1}{(1-x)^2})\ dx=\ln|1-x|+1/(1-x)+C#