How do you use the angle sum identity to find the exact value of cos 105?

3 Answers
May 23, 2018

Please see the explanation below

Explanation:

Apply

#cos(a+b)=cosacosb-sinasinb#

Therefore,

#cos105=cos(60+45)#

#=cos60cos45-sin60sin45#

#=(1/2)xx(sqrt2/2)-(sqrt3/2)xx(sqrt2/2)#

#=1/4(sqrt2-sqrt6)#

#=0.2588#

May 23, 2018

#(sqrt2-sqrt6)/4#

Explanation:

#cos(105)#

= #cos(60+45)#

Recall: #cos(a+b)=cosacosb-sinasinb)#
= #cos60cos45-sin60sin45#

= #1/2times1/sqrt2-sqrt3/2times1/sqrt2#

= #1/(2sqrt2)-sqrt3/(2sqrt2)#

common denominator so you can turn the two separate fractions into one fraction
= #(1-sqrt3)/(2sqrt2)#

rationalise the denominator
= #(1-sqrt3)/(2sqrt2)timessqrt2/sqrt2#

simplify
= #(sqrt2-sqrt6)/4#

May 23, 2018

#1/4(sqrt2-sqrt6)#

Explanation:

#"using the "color(blue)"trigonometric identity"#

#•color(white)(x)cos(x+y)=cosxcosy-sinxsiny#

#cos105=cos(60+45)#

#=cos60cos45-sin60sin45#

#=(1/2xxsqrt2/2)-(sqrt3/2xxsqrt2/2)#

#=sqrt2/4-sqrt6/4=1/4(sqrt2-sqrt6)#