How do you use the angle sum or difference identity to find the exact value of #tan(pi/6-pi/3)#?

1 Answer
Apr 10, 2017

#= -1/sqrt3#

Explanation:

FACTS TO KNOW:
#tan(pi/6) = 1/sqrt3#
#tan(pi/3) = sqrt3#
(The two above can be verified by drawing a 30-60-90 triangle)
#tan(A-B) = (tanA-tanB)/(1+tanAtanB)#

Therefore:
#tan(pi/6-pi/3) = (tan(pi/6)-tan(pi/3))/(1+tan(pi/6)tan(pi/3))#
#= (1/sqrt3-sqrt3)/(1+(1/sqrt3)sqrt3)#
#= (1/sqrt3-sqrt3)/(1+1)#
#= (1/sqrt3-sqrt3)/(2)#, then multiply top and bottom by #sqrt3#
#= (1-3)/(2sqrt3)#
#= -2/(2sqrt3)#
#= -1/sqrt3#

And thus this is how to use the difference/sum of angles formula

SOMETHING ELSE:
You can use the identity #tan(-x) = -tan(x)# to make this much simpler
#tan(pi/6-pi/3) = tan(-pi/3)#
#=-tan(pi/3)#
#=-1/sqrt3#