How do you use the chain rule to differentiate #y=(-5x^3-3)^3#?
1 Answer
Jan 6, 2017
Explanation:
To differentiate using the
#color(blue)"chain rule"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))#
#"let " u=-5x^3-3rArr(du)/(dx)=-15x^2#
#"and " y=u^3rArr(dy)/(du)=3u^2#
#rArrdy/dx=3u^2(-15x^2)# change u back into terms of x
#rArrdy/dx=-45x^2(-5x^3-3)^2#