How do you use the chain rule to differentiate #y=sin(cosx)#?

1 Answer
Aug 27, 2016

#=>dy/dx=-sin(x)cos(cos(x))#

Explanation:

Let #u=cos(x)=> (du)/dx = -sin(x)#

Let #y=sin(u)=> dy/(du)=cos(u)#

But #color(blue)(dy/(du)xx(du)/dx)color(red)(" " =" " (du)/(du)xxdy/dx)color(green)(" "=" "1xxdy/dx)color(magenta)(" "=" "dy/dx)#

#=>dy/dx=-sin(x)cos(u)#

but #u=cos(x)# giving:

#=>dy/dx=-sin(x)cos(cos(x))#