How do you use the chain rule to differentiate #y=sinroot3(x)+root3(sinx)#? Calculus Basic Differentiation Rules Chain Rule 1 Answer maganbhai P. Mar 29, 2018 #(dy)/(dx)=1/3[cosroot(3)x/root(3)(x^2)+cosx/root(3)(sin^2x)]# Explanation: Here, #y=sinroot(3)x+root(3)sinx=sin(x^(1/3))+(sinx)^(1/3)# #(dy)/(dx)=cosroot(3)xd/(dx)(x^(1/3))+1/3(sinx)^(1/3-1)d/(dx) (sinx)# #=>(dy)/(dx)=cosroot(3)x(1/3x^(1/3-1))+1/3(sinx)^(-2/3)cosx# #=1/3x^(-2/3)cosroot(3)x+1/3cosx(sinx)^(-2/3)# #=1/3[cosroot(3)x/x^(2/3)+cosx/(sinx)^(2/3)]# #=1/3[cosroot(3)x/root(3)(x^2)+cosx/root(3)(sin^2x)]# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1300 views around the world You can reuse this answer Creative Commons License