How do you use the chain rule to differentiate #y=sqrt(3x^2+4x)#?

1 Answer
Nov 18, 2016

I found: #(dy)/(dx)=(6x+4)/(2sqrt(3x^2+4x))#

Explanation:

We first differentiate the square root leaving the argument as it is and multiply by the differential of the argument (red):
We can write:
#y=sqrt(3x^2+4x)=(3x^2+4x)^(1/2)#
so we get:
#(dy)/(dx)=1/2(3x^2+4x)^(1/2-1)color(red)((6x+4))=1/2(3x^2+4x)^(-1/2)color(red)((6x+4))=#
so we get:
#(dy)/(dx)=(6x+4)/(2sqrt(3x^2+4x))#