How do you use the definition of a derivative to find the derivative of #1/sqrt(x)#?

2 Answers
May 13, 2015

First, remember that square roots can be rewritten in exponential forms:

#root(n)(x^m)# = #x^(m/n)#

As you have a simple square root in the denominator of your function, we can rewrite it as #x^(1/2)#, alright?

Now, remembering that when potences are on the denominator you can bring them to the numerator by changing its positivity/negativity, you can rewrite #1/(x^(1/2))# as #x^(-1/2)#

Deriving now your function, you'll get:

#-(1/2).x^(-3/2)#

Alternatively: #-1/(2(x^(3/2))#

Or even in this form: #-1/(root(2)(x^3))#

May 14, 2015

#f(x)=1/sqrtx#

#f'(x)=lim_(hrarr0) (f(x+h)-f(x))/h#

# = lim_(hrarr0) (1/sqrt(x+h)-1/sqrt(x))/h#

# = lim_(hrarr0) ((sqrtx-sqrt(x+h))/(sqrt(x+h)sqrt(x)))/(h/1)#

# = lim_(hrarr0) (sqrtx-sqrt(x+h))/(sqrt(x+h)sqrt(x)) * 1/h#

# = lim_(hrarr0) ((sqrtx-sqrt(x+h)))/(hsqrt(x+h)sqrt(x)) * ((sqrtx+sqrt(x+h)))/((sqrtx+sqrt(x+h)))#

# = lim_(hrarr0) (x-(x+h))/(hsqrt(x+h)sqrt(x)(sqrtx+sqrt(x+h)))#

# = lim_(hrarr0) (-h)/(hsqrt(x+h)sqrt(x)(sqrtx+sqrt(x+h)))#

# = lim_(hrarr0) (-1)/(sqrt(x+h)sqrt(x)(sqrtx+sqrt(x+h)))#

# = (-1)/(sqrt(x+0)sqrt(x)(sqrtx+sqrt(x+0)))#

# = (-1)/(x(2sqrtx)) =(-1)/(2xsqrtx) = (-1)/(2x^(3/2))#