How do you use the definition of a derivative to find the derivative of #(2/sqrt x)#?

1 Answer
Mar 3, 2016

#f'(x)=1/(xsqrtx)=1/x^(3/2)#

Explanation:

The limit definition of a derivative states that for a function #f(x)#, its derivative is

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#

Here, #f(x)=2/sqrtx#, so

#f'(x)=lim_(hrarr0)(2/sqrt(x+h)-2/sqrtx)/h#

Multiply the entire fraction by #sqrt(x+h)sqrtx#.

#f'(x)=lim_(hrarr0)(2/sqrt(x+h)-2/sqrtx)/h((sqrt(x+h)sqrtx)/(sqrt(x+h)sqrtx))#

#f'(x)=lim_(hrarr0)(2sqrtx-2sqrt(x+h))/(hsqrt(x+h)sqrtx)#

#f'(x)=lim_(hrarr0)(2(sqrtx-sqrt(x+h)))/(hsqrt(x+h)sqrtx)#

Multiply by the conjugate of the term in the numerator.

#f'(x)=lim_(hrarr0)(2(sqrtx-sqrt(x+h)))/(hsqrt(x+h)sqrtx)((sqrtx+sqrt(x+h))/(sqrtx+sqrt(x+h)))#

#f'(x)=lim_(hrarr0)(2(x-(x-h)))/(hsqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))#

#f'(x)=lim_(hrarr0)(2h)/(hsqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))#

#f'(x)=lim_(hrarr0)2/(sqrt(x+h)sqrtx(sqrtx+sqrt(x+h)))#

Evaluate the limit by plugging in #0# for #h#.

#f'(x)=2/(sqrt(x+0)sqrtx(sqrtx+sqrt(x+0)))#

#f'(x)=2/(sqrtxsqrtx(sqrtx+sqrtx)#

#f'(x)=2/(x(2sqrtx))#

#f'(x)=1/(xsqrtx)=1/x^(3/2)#