How do you use the definition of a derivative to find the derivative of #f(x)=1/2x^2-x-2#?

1 Answer
Sep 2, 2017

Answer:

#f(x) =x^2 -x -2 ; f'(x) = 2x -1 #

Explanation:

A) Let #f(x) = x^2 ; f^'(x) = lim_(h>0) ((x+h)^2 -x^2)/h# or

#lim_(h>0) (cancelx^2+2hx+h^2 - cancelx^2)/h# or

#lim_(h>0) (cancelh(2x+h))/cancelh =2x#.

B) #f(x) = x ; f^'(x) = lim_(h>0) ((cancelx+h) -cancelx)/h# or

#lim_(h>0) h/h =1#

C) #f(x) = 2 ; f^'(x) =0#

#f(x) =x^2 -x -2 ; f'(x) = 2x -1 # [Ans]