How do you use the definition of a derivative to find the derivative of #f(x) = |x|#?

1 Answer
Nov 24, 2016

# f'(x) = { (-1, x<0), ("undefined",x=0), (1,x>0) :} #

Explanation:

By definition of the derivative # f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So with # f(x) = |x| # we have;

# f'(x) = lim_(h rarr 0) ( |x+h| - |x| ) / h #
# :. f'(x) = lim_(h rarr 0) (( |x+h| - |x| )) / h (( |x+h| + |x| ))/(( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( (|x+h|)^2 -(|x|)^2) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( (x+h)^2 -x^2) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( x^2+2hx+h^2 -x^2) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( 2hx+h^2 ) / ( h( |x+h| + |x| )) #
# :. f'(x) = lim_(h rarr 0) ( 2x+h ) / ( |x+h| + |x| ) #
# :. f'(x) = ( 2x + 0) / ( |x+0| + |x| ) #
# :. f'(x) = ( 2x ) / (2 |x| ) #
# :. f'(x) = x / |x| #

Which if you think about it for a moment, we can write as;
# f'(x) = { (-1, x<0), ("undefined",x=0), (1,x>0) :} #

The above maths is actually a lot easier if you go straight to the definition of #|x|#, as in:

# |x| = { (-x, x<0), (0 , x=0), (x, x>0) :} #

And if we graph #y=|x|#, the result should be obvious, as is the reason for f'(x) being undefined at #x=0# (despite #y=|x|# being continuous when #x=0#)

graph{|x| [-10, 10, -5, 5]}

As, # { ("differentiability" ,rArr, "continuity"), ("continuity", !rArr, "differentiability") :} #