Here ,
#f(x)=x^3-2x^2+5x-6=>f(t)=t^3-2t^2+5t-6#
We know that ,
#f'(x)=lim_(t tox)(f(t)-f(x))/(t-x) to"definition"#
Substitute values of #f(t) and f(x)#
#f'(x)=lim_(t tox)((t^3-2t^2+5t-6)-(x^3-2x^2+5x-6))/(t-x)#
#f'(x)=lim_(t tox)((t^3-x^3)-2(t^2-x^2)+5(t-x))/(t-x)#
#f'(x)=lim_(t tox)(color(red)(cancel((t-x))){(t^2+tx+x^2)-2(t+x)+5(1)})/color(red)cancel(t-x)#
#f'(x)=lim_(t tox){(t^2+tx+x^2)-2(t+x)+5(1)}#
#f'(x)=(x^2+x*x+x^2)-2(x+x)+5(1)#
#f'(x)=(3x^2)-2(2x)+5(1)#
#:.f'(x)=3x^2-4x+5#