How do you use the definition of a derivative to find the derivative of #f(x)=(x-6)^(2/3)#, at c=6?

1 Answer
May 4, 2016

#f'(6)# does not exist. For how to use the definition, see below. (Warning: It takes a lot of algebra to use the definition to get #f'(x)# for this function.)

Explanation:

For #f(x) = (x-6)^(2/3)#, we need some algebra to use the definition of derivative to find #f'(x)#

#f'(x) = lim_(hrarr0) (f(x+h)-f(x))/h#

# = lim_(hrarr0) ((x+h-6)^(2/3)-(x-6)^(2/3))/h#

# = lim_(hrarr0) (root(3)((x+h-6)^2)-root(3)((x-6)^2))/h#.

Obviously (and as expected) this limit has initial form #0/0#.
We will write the difference quotient so that the numerator contains no radicals. (Often called "rationalizing" the numerator.)
Our goal is to get rid of the #h# in the denominator.

Algebra needed

The sum of two cubes can be factored:

#u^3+v^3 = (u+v)(u^2-uv+v^2)#.

(If you didn't learn this in algebra class, learn it now.)

In this question, we have #3^"rd"# roots, so we need:

#a+b = (root3a+root3b)(root3a^2-root3a root3b+root3b^2)#

#= (root3a+root3b)(root3a^2-root3(ab)+root3b^2)#

To make matters more interesting, we actually have #3^"rd"# roots of squares. So we need:

#a^2+b^2 = (root3(a^2)+root3(b^2))(root3(a^2)^2-root3(a^2) root3(b^2)+root3(b^2)^2)#

#= (root3(a^2)+root3(b^2))(root3(a^2)^2-root3(a^2b^2)+root3(b^2)^2)#

We also will use

#((x+h)-6)^2 = (x+h)^2 - 12(x+h)+36#

# = x^2+2xh+h^2-12x-12h+36#

And, of course #(x-6)^2 = x^2-12x+36#

For the derivative

We'll use the algebra discussed above to rewrite the difference quotient.
We have #a=(x+h-6)# and #b=(x-6)#.

We write:

#(root(3)((x+h-6)^2)-root(3)((x-6)^2))/h#

# = ((root(3)((x+h-6)^2)-root(3)((x-6)^2)))/h*((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))/((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

# = ((x+h-6)^2-(x+6)^2)/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

# = ((x^2+2xh+h^2-12x-12h+36)-(x^2-12x+36))/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

# = ((x^2+2xh+h^2-12x-12h+36)-(x^2-12x+36))/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

# = (2xh+h^2-12h)/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

# = (cancel(h)(2x+h-12))/(cancel(h)(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

Now we can evaluate the limit as #hrarr0# to get

#f'(x) = lim_(hrarr0)((2x+h-12))/((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

# = (2x-12)/((root(3)((x-6)^2)^2 -root3((x-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#

# = (2x-12)/(root(3)(x-6)^4 -root3(x-6)^4+root(3)((x-6)^4))#

# = (2(x-6))/(3root(3)(x-6)^4) = (2(x-6))/(3(x-6)root(3)(x-6)) = 2/(3root3(x-6))#

At #x=6#, the derivative #f'(x)# does not exist.