How do you use the definition of a derivative to find the derivative of #f(x)=(x-6)^(2/3)#, at c=6?
1 Answer
Explanation:
For
# = lim_(hrarr0) ((x+h-6)^(2/3)-(x-6)^(2/3))/h#
# = lim_(hrarr0) (root(3)((x+h-6)^2)-root(3)((x-6)^2))/h# .
Obviously (and as expected) this limit has initial form
We will write the difference quotient so that the numerator contains no radicals. (Often called "rationalizing" the numerator.)
Our goal is to get rid of the
Algebra needed
The sum of two cubes can be factored:
#u^3+v^3 = (u+v)(u^2-uv+v^2)# .
(If you didn't learn this in algebra class, learn it now.)
In this question, we have
#a+b = (root3a+root3b)(root3a^2-root3a root3b+root3b^2)#
#= (root3a+root3b)(root3a^2-root3(ab)+root3b^2)#
To make matters more interesting, we actually have
#a^2+b^2 = (root3(a^2)+root3(b^2))(root3(a^2)^2-root3(a^2) root3(b^2)+root3(b^2)^2)#
#= (root3(a^2)+root3(b^2))(root3(a^2)^2-root3(a^2b^2)+root3(b^2)^2)#
We also will use
#((x+h)-6)^2 = (x+h)^2 - 12(x+h)+36#
# = x^2+2xh+h^2-12x-12h+36#
And, of course
For the derivative
We'll use the algebra discussed above to rewrite the difference quotient.
We have
We write:
# = ((root(3)((x+h-6)^2)-root(3)((x-6)^2)))/h*((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))/((root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#
# = ((x+h-6)^2-(x+6)^2)/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#
# = ((x^2+2xh+h^2-12x-12h+36)-(x^2-12x+36))/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#
# = ((x^2+2xh+h^2-12x-12h+36)-(x^2-12x+36))/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#
# = (2xh+h^2-12h)/(h(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#
# = (cancel(h)(2x+h-12))/(cancel(h)(root(3)((x+h-6)^2)^2 -root3((x+h-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#
Now we can evaluate the limit as
# = (2x-12)/((root(3)((x-6)^2)^2 -root3((x-6)^2(x-6)^2)+root(3)((x-6)^2)^2))#
# = (2x-12)/(root(3)(x-6)^4 -root3(x-6)^4+root(3)((x-6)^4))#
# = (2(x-6))/(3root(3)(x-6)^4) = (2(x-6))/(3(x-6)root(3)(x-6)) = 2/(3root3(x-6))#
At