How do you use the definition of a derivative to find the derivative of #(x^2+1) / (x-2)#?
1 Answer
# d/dx (x^2+1)/(x-2) = (x^2-4x-1)/(x-2)^2 #
Explanation:
The definition of the derivative of
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
Let
# f(x+h)-f(x) #
# \ \ = ((x+h)^2+1)/((x+h)-2) - (x^2+1)/(x-2) #
# \ \ = { ((x+h)^2+1)(x-2) - (x^2+1)(x+h-2) } / { (x+h-2)(x-2) } #
# \ \ = { (x^2+2hx+h^2+1)(x-2) - (x^2+1)(x+h-2) } / { (x+h-2)(x-2) } #
# \ \ = {{ x^3+2hx^2+h^2x+x -2x^2-4hx-2h^2-2 -x-h+2-x^3-hx^2+2x^2 }} / { (x+h-2)(x-2) } #
# \ \ = { hx^2+h^2x -4hx-2h^2 -h } / { (x+h-2)(x-2) } #
And so the limit becomes:
# f'(x)=lim_(h rarr 0) {{ hx^2+h^2x -4hx-2h^2 -h } / { (x+h-2)(x-2) }}/h#
# " "= lim_(h rarr 0) { x^2+hx -4x-2h -1 } / { (x+h-2)(x-2) }#
# " "= { x^2+0 -4x-0 -1 } / { (x+0-2)(x-2) }#
# " "= { x^2-4x-1 } / { (x-2)(x-2) }#
# " "= { x^2-4x-1 } / { (x-2)^2 }#