How do you use the definition of the derivative to find f '(x) and f ''(x) for #f(x) = 4 + 9x - x^2#?

1 Answer
Aug 13, 2015

See the explanation.

Explanation:

Use the definition of the derivative to find f '(x) and f ''(x) for #f(x) = 4 + 9x - x^2#

Recall the definition of derivative:

#f'(x) = lim_(hrarr0) (f(x+h)-f(x))/h#

So for this function, we have:

#f'(x) = lim_(hrarr0) (overbrace([4+9(x+h)-(x+h)^2])^(f(x+h)) - overbrace([4+9x-x^2])^f(x))/h#.

# = lim_(hrarr0) ([4+9x+9h-x^2-2xh-h^2] - [4+9x-x^2])/h#

# = lim_(hrarr0) (9h-2xh-h^2)/h#

# = lim_(hrarr0) (h(9-2x-h))/h#

# = lim_(hrarr0) (9-2x-h)#

# = 9-2x#

So #f'(x) = 9-2x#

Now the second derivative is the derivative of the first, so we have:

#f''(x) = lim_(hrarr0) (f'(x+h)-f'(x))/h#

# = lim_(hrarr0) ([9-2(x+h)] -[9-2(x)])/h#

# = lim_(hrarr0) ([9-2x-2h] -[9-2x])/h#

# = lim_(hrarr0) (-2h)/h#

# = -2#

So #f''(x) = -2#