Defintion of a derivative:
#f'(x) = lim_(hrarr0)(f(x+h)-f(x))/h#
#f(x) = 6x + 2sqrtx#
#f(x+h) = 6(x+h) + 2sqrt(x+h)#
#f'(x) = lim_(hrarr0)(6(x+h) + 2sqrt(x+h)-(6x + 2sqrtx))/h#
#f'(x) = lim_(hrarr0)(6h + 2(sqrt(x+h) - sqrt(x)))/h#
#f'(x) = 6+ 2lim_(hrarr0)(sqrt(x+h) - sqrt(x))/h#
#f'(x) = 6+ 2lim_(hrarr0)(sqrt(x+h) - sqrt(x))/h xx (sqrt(x+h) + sqrt(x))/(sqrt(x+h) + sqrt(x))#
#f'(x) = 6+2lim_(hrarr0)(x+h - x)/(h(sqrt(x+h) + sqrt(x)))#
#f'(x) = 6+2lim_(hrarr0)(h )/(h(sqrt(x+h) + sqrt(x)))#
#f'(x) = 6+2lim_(hrarr0)(1 )/(sqrt(x+h) + sqrt(x))#
#f'(x) = 6 + 2 xx 1/(sqrtx+sqrtx)#
#f'(x) = 6 + 1/sqrtx#