How do you use the formal definition to find the derivative of #y=1-x^3# at x=2?
1 Answer
Aug 21, 2015
That depends on which formal definition of the derivative at
Explanation:
Using definition
# = lim_(hrarr0)([1-(8+12h+6h^2+h^3)]-[1-8])/h# #" "# See Note below
# = lim_(hrarr0)(-12h-6h^2-h^3)/h#
# = lim_(hrarr0)(h(-12-6h-h^2))/h#
# = lim_(hrarr0)(-12-6h-h^2)#
# = -12#
Note: expand
Using definition
# = lim_(xrarr2)(-x^3+8)/(x-2)#
# = lim_(xrarr2)(-(x^3-8))/(x-2)#
# = lim_(xrarr2)(-(x-2)(x^2+2x+4))/(x-2)#
# = lim_(xrarr2)-(x^2+2x+4)#
# = -12#