How do you use the half-angle identity to find the exact value of cos [ - (3pi) / 8]?

1 Answer
Aug 10, 2015

Find #cos ((-3pi)/8)#

Ans: #sqrt(2 - sqrt2)/2#

Explanation:

Call cos ((-3pi)/8) = cos t
#cos 2t = cos ((-6pi)/8) = cos ((6pi)/8) = cos ((3pi)/4) = -sqrt2/2#

Use the trig identity: #cos 2t = 2cos^2 t - 1#
#cos 2t = -sqrt2/2 = 2cos^2 t - 1#
#2cos^2 t = 1 - sqrt2/2 = (2 - sqrt2)/2#
#cos^2 t = (2 - sqrt2)/4#
#cos t = cos ((-3pi)/8) = +- sqrt(2 - sqrt2)/2#
Only the positive answer is accepted, because the arc #(-3pi)/8# is in Quadrant IV.
Check by calculator.
#sqrt(2 - sqrt2)/2# = 0.382
#cos ((3pi)/8) = cos 67.5# deg = 0.382.# Correct