How do you use the limit definition of a derivative to take the derivative of #f(x) = sin(nx)# for a constant n?

1 Answer
Jun 30, 2015

It is much like using the limit definition to find the derivative of #sinx#.

Explanation:

Many of the details are like finding the derivative of #sinx#

but instead of #lim_(hrarr0)sinh/h = 1#

we need #lim_(hrarr0)sin(nh)/h = lim_(hrarr0)n(sin(nh)/(nh)) = n#

#f'(x) = lim_(hrarr0)(f(x+h)-f(x))/h #

# = lim_(hrarr0)(sinn(x+h)-sinnx)/h #

# = lim_(hrarr0)(sin(nx+nh)-sinnx)/h #

# = lim_(hrarr0)(sin(nx)cos(nh)+cos(nx)sin(nh)-sin(nx))/h #

# = lim_(hrarr0)((sin(nx)cos(nh)-sin(nx))/h+(cos(nx)sin(nh))/h) #

# = lim_(hrarr0)(sin(nx)(cos(nh)-1)/h +cos(nx)sin(nh)/h) #

Now, we need: as #hrarr0#, we get #nh rarr0#, so we have:

#lim_(hrarr0)(cos(nh)-1)/h = nlim_(hrarr0)(cos(nh)-1)/(nh) = n*0 =0#

and
#lim_(hrarr0)sin(nh)/h = n lim_(hrarr0)(sin(nh)/(nh)) = n*1 = n#

So we can continue:

#lim_(hrarr0)(sin(nx)(cos(nh)-1)/h +cos(nx)sin(nh)/h) =sin(nx)*0+cos(nx)*n#

# = ncosnx#