How do you use the limit definition of the derivative to find the derivative of #f(x)=x/(x+1)#?
1 Answer
See below for two possible solutions.
Explanation:
Soultion 1
Using:
If we try substitution, we get the indeterminate form
# = lim_(hrarr0)(((x+h)(x+1)-x(x+h+1))/((x+h+1)(x+1))) / (h/1)#
# = lim_(hrarr0)(((x^2+x+xh+h-x^2-xh-x))/((x+h+1)(x+1))) / (h/1)#
# = lim_(hrarr0)((h)/((x+h+1)(x+1))) / (h/1)#
# = lim_(hrarr0)((h)/(x+h+1)(x+1)) * 1/h#
# = lim_(hrarr0) 1/((x+h+1)(x+1)) # .
Now, when we evaluate, we do not get
# = 1/(x+1)^2 # .
Solution 2
Using
If we try substitution, we get the indeterminate form
# = lim_(trarrx)((t(x+1)-x(t+1))/((t+1)(x+1))) / ((t-x)/1)#
# = lim_(trarrx)(((tx+t-tx-x))/((t+1)(x+1))) / ((t-x)/1)#
# = lim_(trarrx)((t-x)/((t+1)(x+1))) / ((t-x)/1)#
# = lim_(trarrx)(t-x)/((t+1)(x+1)) * 1/(t-x)#
# = lim_(trarrx) 1/((t+1)(x+1)) # .
Now, when we evaluate, we do not get
# = 1/(x+1)^2 # .