How do you use the limit definition of the derivative to find the derivative of #f(x)=sqrt(2x+7)#?

1 Answer
May 11, 2017

# f'(x)=1/sqrt(2x+7)#.

Explanation:

Recall that, #f'(x)=lim_(t to x) (f(t)-f(x))/(t-x).#

Since, #f(x)=sqrt(2x+7), :., f(t)=sqrt(2t+7).#

# rArr f'(x)=lim_(t to x){sqrt(2t+7)-sqrt(2x+7)}/(t-x)#

#=lim_(t to x){sqrt(2t+7)-sqrt(2x+7)}/(t-x)xx{sqrt(2t+7)+sqrt(2x+7)}/{sqrt(2t+7)+sqrt(2x+7)}#

#=lim_(t to x){(2t+7)-(2x+7)}/{(t-x)(sqrt(2t+7)+sqrt(2x+7))#

#=lim_(t to x){(2(t-x))/(t-x)}1/{sqrt(2t+7)+sqrt(2x+7)}#

#=2/{sqrt(2x+7)+sqrt(2x+7)}#

#:. f'(x)=1/sqrt(2x+7)#.

Enjoy Maths.!