How do you use the limit definition to find the derivative of #f(x)=sqrt(x+1)#?

1 Answer
Nov 23, 2016

# f'(x)=( 1 ) / ( 2sqrt(x+1) )#

Explanation:

By definition of the derivative # f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So with # f(x) = sqrt(x+1) # we have;

# f'(x)=lim_(h rarr 0) ( sqrt((x+h)+1) - sqrt(x+1) ) / h #
# :. f'(x)=lim_(h rarr 0) ( sqrt(x+h+1) - sqrt(x+1) ) / h * ( sqrt(x+h+1) + sqrt(x+1) )/( sqrt(x+h+1) + sqrt(x+1) )#

# :. f'(x)=lim_(h rarr 0) ( (x+h+1) - (x+1) ) / (h * ( sqrt(x+h+1) + sqrt(x+1) ))#
# :. f'(x)=lim_(h rarr 0) ( h ) / (h * ( sqrt(x+h+1) + sqrt(x+1) ))#
# :. f'(x)=lim_(h rarr 0) ( 1 ) / ( sqrt(x+h+1) + sqrt(x+1) )#
# :. f'(x)=( 1 ) / ( sqrt(x+1) + sqrt(x+1) )#
# :. f'(x)=( 1 ) / ( 2sqrt(x+1) )#