How do you use the limit definition to find the slope of the tangent line to the graph #f(x) = 4- x^2# at (2,0)?

1 Answer
Nov 6, 2016

The slope of the tangent line is #-4#.

Explanation:

When dealing with "limit definition" problems, use the formula #f'(x) = lim_(h->0) (f(x + h) - f(x))/h# to find the derivative.

#f'(x) = lim_(h->0) (f(x + h) - f(x))/h#

#f'(x) = lim_(h->0) (4 - (x + h)^2 - (4 - x^2))/h#

#f'(x) = lim_(h->0) (4 - x^2 - 2xh - h^2 - 4 + x^2)/h#

#f'(x)= lim_(h-0) (-2xh + h^2)/h#

#f'(x) = lim_(h->0) (h(-2x + h))/h#

#f'(x) = lim_(h-> 0) -2x + h#

#f'(x) = -2x + 0#

#f'(x) = -2x#

We can now substitute the #x# coordinate of your point into the derivative to find the slope the tangent line.

#f'(x) = -2(2)#

#f'(x) = -4#

Hence, the slope of the tangent line is #-4#.

Hopefully this helps!