How do you use the quadratic formula to solve #tan^2x+3tanx+1=0# in the interval #[0,2pi)#?

1 Answer
Feb 4, 2017

#20^@90, 84^@86, 264^@86, 339^@10#

Explanation:

Solve this quadratic equation for tan x, by using the improved quadratic formula (Socratic Search):
#tan^2 x + 3tan x + 1 = 0#
#D = d^2 = b^2 - 4ac = 9 - 4 = 5# --> #d = +- sqrt5#
There are 2 real roots:
#tan x = -b/(2a) +- d/(2a) = -3/2 +- sqrt5/2#
#tan x1 = (-3 + sqrt5)/2 = - 0.76/2 = - 0.38#
#tan x2 = (-3 - sqrt5)/2 = 22.26/2 = 11.12#
Use calculator and unit circle -->
tan x1 = - 0.38 --> #x1 = - 20^@90# and
#x1 = - 20.90 + 180 = 159^@90#
The arc #(-20^@90)# is co-terminal to arc:# (360 - 20.90 = 339^@0)#
tan x2 = 11.12 --> #x2 = 84^@86# and
#x2 = 84.86 + 180 = 264^@86#
Answers for #(0, 360)#:
#20^@90, 84^@86, 264^@86, 339^@10#