How do you use the quotient rule to find the derivative of #y=(ax+b)/(cx+d)# ?
1 Answer
Jul 29, 2014
#y'=(ad-bc)/(cx+d)^2# Using Quotient Rule,
#y=f(x)/g(x)# , then#y'=(f'(x)g(x)−f(x)g'(x))/(g(x))^2#
#y=(ax+b)/(cx+d)# differentiating both sides with respect to x,
#y'=((ax+b)'(cx+d)-(ax+b)(cx+d)')/(cx+d)^2#
#y'=(a(cx+d)-(ax+b)c)/(cx+d)^2#
#y'=(ad-bc)/(cx+d)^2#