How do you use the quotient rule to find the derivative of #y=e^x/cos(x)# ?
1 Answer
Sep 16, 2014
#y'=(e^x*(cosx+sinx))/(cos^2x)# Explanation :
let's
#y=f(x)/g(x)# then Using quotient rule to find derivative of above function,
#y'=(f'(x)g(x)-f(x)g'(x))/(g(x))^2# Similarly following for the given problem,
#y=e^x/cos(x)# , yields
#y'=(e^x*cos(x)-e^x*(-sinx))/(cos^2x)#
#y'=(e^x*(cosx+sinx))/(cos^2x)#