How do you use the rational roots theorem to find all possible zeros of #f(x)=2x^3+7x^2+8x-8#?
1 Answer
Find
Use Cardano's method to find Real zero:
#x_1 = 1/6(-7+root(3)(-593+12sqrt(2442))+root(3)(-593-12sqrt(2442)))#
and related Complex zeros.
Explanation:
#f(x) = 2x^3+7x^2+8x-8#
By the rational roots theorem, any rational zeros of
#+-1/2, +-1, +-2, +-4, +-8#
None of these works, so
We can find the irrational zeros using Cardano's method.
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 3136-4096+10976-6912-16128 = -13024#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=108f(x)=216x^3+756x^2+864x-864#
#=(6x+7)^3-3(6x+7)-1186#
#=t^3-3t-1186#
where
Cardano's method
We want to solve:
#t^3-3t-1186=0#
Let
Then:
#u^3+v^3+3(uv-1)(u+v)-1186=0#
Add the constraint
#u^3+1/u^3-1186=0#
Multiply through by
#(u^3)^2-1186(u^3)+1=0#
Use the quadratic formula to find:
#u^3=(1186+-sqrt((-1186)^2-4(1)(1)))/(2*1)#
#=(-1186+-sqrt(1406596-4))/2#
#=(-1186+-sqrt(1406592))/2#
#=(-1186+-24sqrt(2442))/2#
#=-593+-12sqrt(2442)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(-593+12sqrt(2442))+root(3)((-593-12sqrt(2442))#
and related Complex roots:
#t_2=omega root(3)(-593+12sqrt(2442))+omega^2 root(3)(-593-12sqrt(2442))#
#t_3=omega^2 root(3)(-593+12sqrt(2442))+omega root(3)(-593-12sqrt(2442))#
where
Now
#x_1 = 1/6(-7+root(3)(-593+12sqrt(2442))+root(3)(-593-12sqrt(2442)))#
#x_2 = 1/6(-7+omega root(3)(-593+12sqrt(2442))+omega^2 root(3)(-593-12sqrt(2442)))#
#x_3 = 1/6(-7+omega^2 root(3)(-593+12sqrt(2442))+omega root(3)(-593-12sqrt(2442)))#