How do you use the rational roots theorem to find all possible zeros of #f(x)=2x^3-7x^2-10x-3#?
1 Answer
Aug 8, 2016
Explanation:
#f(x) = 2x^3-7x^2-10x-3#
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/2, +-1, +-3#
We find:
#f(-1/2) = 2(-1/2)^3-7(-1/2)^2-10(-1/2)-3#
#=-1/4-7/4+10/2-3=0#
So
#2x^3-7x^2-10x-3#
#= (2x+1)(x^2-4x-3)#
#= (2x+1)(x^2-4x+4-7)#
#= (2x+1)((x-2)^2-(sqrt(7))^2)#
#= (2x+1)(x-2-sqrt(7))(x-2+sqrt(7))#
Hence the two other zeros are:
#x=2+-sqrt(7)#