How do you use the rational roots theorem to find all possible zeros of #f(x) = 2x^3 + 8x^2 + 7x - 8#?
1 Answer
#x_1 = 1/6(-8+root(3)(-424+54sqrt(58))+root(3)(-424-54sqrt(58)))#
and related Complex zeros.
Explanation:
#f(x) = 2x^3+8x^2+7x-8#
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/2, +-1, +-2, +-4, +-8#
None of these work, so we need other means to find the zeros:
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 3136-2744+16384-6912-16128 = -6264#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=108f(x)=216x^3+864x^2+756x-864#
#=(6x+8)^3-66(6x+8)-848#
#=t^3-66t-848#
where
Cardano's method
We want to solve:
#t^3-66t-848=0#
Let
Then:
#u^3+v^3+3(uv-22)(u+v)-848=0#
Add the constraint
#u^3+10648/u^3-848=0#
Multiply through by
#(u^3)^2-848(u^3)+10648=0#
Use the quadratic formula to find:
#u^3=(848+-sqrt((-848)^2-4(1)(10648)))/(2*1)#
#=(-848+-sqrt(719104-42592))/2#
#=(-848+-sqrt(676512))/2#
#=(-848+-108sqrt(58))/2#
#=-424+-54sqrt(58)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(-424+54sqrt(58))+root(3)(-424-54sqrt(58))#
and related Complex roots:
#t_2=omega root(3)(-424+54sqrt(58))+omega^2 root(3)(-424-54sqrt(58))#
#t_3=omega^2 root(3)(-424+54sqrt(58))+omega root(3)(-424-54sqrt(58))#
where
Now
#x_1 = 1/6(-8+root(3)(-424+54sqrt(58))+root(3)(-424-54sqrt(58)))#
#x_2 = 1/6(-8+omega root(3)(-424+54sqrt(58))+omega^2 root(3)(-424-54sqrt(58)))#
#x_3 = 1/6(-8+omega^2 root(3)(-424+54sqrt(58))+omega root(3)(-424-54sqrt(58)))#