How do you use the rational roots theorem to find all possible zeros of #f(x) = x^3 - 10x^2 + 9x - 24#?
1 Answer
Find
#x_1 = 1/3(10+root(3)(-919+18sqrt(1406))+root(3)(-919-18sqrt(1406)))#
and related Complex zeros.
Explanation:
#f(x) = x^3-10x^2+9x-24#
By the rational roots theorem, any rational zeros of
#+-1, +-2, +-3, +-4, +-6, +-8, +-12, +-24#
In addition, using Descartes' rule of signs we find that
#1, 2, 3, 4, 6, 8, 12, 24#
None of these work, so
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 8100-2916-96000-15552+38880 = -67488#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3-270x^2+243x-648#
#=(3x-10)^3-219(3x-10)-1838#
#=t^3-219t-1838#
where
Cardano's method
We want to solve:
#t^3-219t-1838=0#
Let
Then:
#u^3+v^3+3(uv-73)(u+v)-1838=0#
Add the constraint
#u^3+389017/u^3-1838=0#
Multiply through by
#(u^3)^2-1838(u^3)+389017=0#
Use the quadratic formula to find:
#u^3=(1838+-sqrt((-1838)^2-4(1)(389017)))/(2*1)#
#=(-1838+-sqrt(3378244-1556068))/2#
#=(-1838+-sqrt(1822176))/2#
#=(-1838+-36sqrt(1406))/2#
#=-919+-18sqrt(1406)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(-919+18sqrt(1406))+root(3)(-919-18sqrt(1406))#
and related Complex roots:
#t_2=omega root(3)(-919+18sqrt(1406))+omega^2 root(3)(-919-18sqrt(1406))#
#t_3=omega^2 root(3)(-919+18sqrt(1406))+omega root(3)(-919-18sqrt(1406))#
where
Now
#x_1 = 1/3(10+root(3)(-919+18sqrt(1406))+root(3)(-919-18sqrt(1406)))#
#x_2 = 1/3(10+omega root(3)(-919+18sqrt(1406))+omega^2 root(3)(-919-18sqrt(1406)))#
#x_3 = 1/3(10+omega^2 root(3)(-919+18sqrt(1406))+omega root(3)(-919-18sqrt(1406)))#