How do you use the rational roots theorem to find all possible zeros of #P(x)=2x^3+9x^2+11x-8#?
1 Answer
Aug 12, 2016
Explanation:
#P(x) = 2x^3+9x^2+11x-8#
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/2, +-1, +-2, +-4, +-8#
We find:
#P(1/2) = 2(1/8)+9(1/4)+11(1/2)-8 = (1+9+22-32)/4 = 0#
So
#2x^3+9x^2+11x-8#
#=(2x-1)(x^2+5x+8)#
#=(2x-1)((x-5/2)^2-25/4+8)#
#=(2x-1)((x-5/2)^2+7/4)#
#=(2x-1)((x-5/2)^2-(sqrt(7)/2i)^2)#
#=(2x-1)(x-5/2-sqrt(7)/2i)(x-5/2+sqrt(7)/2i)#
Hence the other two zeros are:
#x = 5/2+-sqrt(7)/2i#