How do you use the rational roots theorem to find all possible zeros of #y=2x^3+2x^2-23x-9#?
1 Answer
Use a trigonometric method to find Real zeros:
#x_n = 1/3(sqrt(142) cos(1/3 arccos((8sqrt(142))/2201) + (2npi)/3) - 1)#
for
Explanation:
#f(x) = 2x^3+2x^2-23x-9#
Rational roots theorem
Any rational zeros of
So the only possible rational zeros are:
#+-1/2, +-1, +-3/2, +-3, +-9/2, +-9#
None of these works, so
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 2116+97336+288-8748+14904 = 105896#
Since
As a result, pure algebraic methods like Cardano's method will yield results containing irreducible cube roots of Complex numbers. So choose to use a trigonometric solution instead.
Tschirnhaus transformation
First, simplify the cubic using a linear substitution:
#108 f(x) = 216x^3+216x^2-2484x-972#
#=(6x+2)^3-426(6x+2)-128#
#=t^3-426t-128#
where
Trigonometric solution
We want to solve:
#t^3-426t-128 = 0#
Consider the substitution:
#t = k cos theta#
Then:
#t^3-426t-128#
#= k^3 cos^3 theta - 426 k cos theta - 128#
#= k^3/4 (4cos^3 theta) - 142k (3cos theta) - 128#
Solve:
#k^3/4 = 142k#
to get:
#k = +-2sqrt(142)#
Let
#0 = t^3-426t-128#
#= 284 sqrt(142)(4 cos^3theta - 3cos theta)-128#
#= 284 sqrt(142)cos(3 theta)-128#
Hence:
#cos(3 theta) = 128/(248sqrt(142)) = (8sqrt(142))/2201#
Hence roots:
#t_n =2 sqrt(142) cos(1/3 arccos((8sqrt(142))/2201) + (2npi)/3)#
giving distinct values for
Then
#x_n = 1/3(sqrt(142) cos(1/3 arccos((8sqrt(142))/2201) + (2npi)/3) - 1)#
for