How do you use the sum and difference identity to evaluate #sin((7pi)/12)#?

2 Answers
Aug 20, 2016

#sqrt(2 + sqrt3)/2#

Explanation:

Trig unit circle -->
#sin ((7pi)/12) = sin (pi/12 + pi/2) = cos (pi/12)#
Find #cos (pi/12)# by using the trig identity:
#cos 2a = 2cos^2 a - 1#
#cos ((2pi)/12) = cos (pi/6) = sqrt3/2 = 2cos^2 (pi/12) - 1#
#2cos^2 (pi/12) = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 (pi/12) = (2 + sqrt3)/4#
#cos (pi/12) = +- sqrt(2 + sqrt3)/2.#
Since cos (pi/12) is positive, take the positive answer.
Finally,
#sin ((7pi)/12) = cos (pi/12) = sqrt(2 + sqrt3)/2#

Aug 20, 2016

#sin(7pi/12)=(sqrt6+sqrt2)/4#.

Explanation:

We have, #sin(pi-theta)=sintheta#.

#rArr sin(7pi/12)=sin (pi-5pi/12)=sin5pi/12#.

Now, #sin(A+B)=sinAcosB+cosAsinB#.

Taking, #A=pi/4, and, B=pi/6#,

we have, #A+B=pi/4+pi/6=3pi/12+2pi/12=5pi/12#.

#:. sin5pi/12=sin(pi/4+pi/6)#.

#=sin(pi/4)cos(pi/6)+cos(pi/4)sin(pi/6)#.

#=1/sqrt2*sqrt3/2+1/sqrt2*1/2=(sqrt3+1)/(2sqrt2)=(sqrt6+sqrt2)/4#.

Finally, #sin(7pi/12)=(sqrt6+sqrt2)/4#.

Just to match this Answer with that furnished by Respected Nghi N. , we see that,

#(sqrt3+1)/(2sqrt2)=sqrt{((sqrt3+1)/(2sqrt2))^2}=sqrt{((3+1+2sqrt3)/8)#

#=sqrt((4+2sqrt3)/8)=sqrt{(2(2+sqrt3))/8}=sqrt{(2+sqrt3)/4}=sqrt(2+sqrt3)/2#

Enjoy Maths.!