How do you verify #(sin^2x - cos^2x)/(sinx + cosx)=sinx-cosx#?
1 Answer
Apr 17, 2018
Explanation:
#"consider the left side"#
#sin^2x-cos^2x" is a "color(blue)"difference of squares"#
#"which factorises, in general"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#rArr(sin^2x-cos^2x)/(sinx+cosx)#
#=((sinx-cosx)cancel((sinx+cosx)))/cancel((sinx+cosx))#
#=sinx-cosx="right side "rArr"verified"#