How do you verify #sin^2xsec^2x+sin^2xcsc^2x=sec^2x#?

1 Answer
May 20, 2018

See below for verification with the assumption that #sin(x)!=0#
The given equation is not true if #sin(x)=0#

Explanation:

#sin^2(x)sec^2(x)+sin^2(x)csc^2(x)#

#color(white)("XXX")=sin^2(x)[sec^2(x)+csc^2(x)]#

#color(white)("XXX")=sin^2(x)[1/cos^2(x)+1/(sin^2(x))]#

#color(white)("XXX")=sin^2(x)[(sin^2(x)+cos^2(x))/(cos^2(x)sin^2(x))]#

#color(white)("XXX")=sin^2(x)[1/(cos^2(x)sin^2(x))]#

#color(white)("XXX")=1/(cos^2(x))#

#color(white)("XXX")=sec^2(x)#