I find that its easier to convert directly to sine and cosine. I recognize the trig identities better.
#(sinX/cosX)/(1-cosX/sinX) + (cosX/sinX)/(1-sinX/cosX)#
There are too many fractions. Turn the #1#'s into #sinX"/"sinX# and #cosX"/"cosX#, then combine the denominators into fractions over #sinX# and #cosX#.
#(sinX/cosX)/((sinX-cosX)/sinX) + (cosX/sinX)/((cosX-sinX)/cosX)#
Now we can get rid of these fractions of fractions by flipping the denominators and multiplying them by the numerators.
#sin^2X/(cosX(sinX-cosX)) + cos^2X/(sinX(cosX-sinX))#
Cross multiply the denominators to get a common denominator.
#(sin^3X(cosX-sinX) + cos^3(sinX-cosX))/(sinXcosX(sinX-cosX)(cosX-sinX))#
Multiply through the parenthesis.
#(sin^3XcosX-sin^4X - cos^4X+sinXcos^3X)/(sinXcosX(-sin^2X+2sinXcosX - cos^2X))#
Pull a factor of #sinXcosX# out of two of the terms in the numerator. There is also a #-(sin^2X+cos^2X)# in the denominator, which by the Pythagorean theorem is equal to #-1#.
#((sin^2X + cos^2X)sinXcosX -sin^4X - cos^4X)/(sinXcosX(2sinXcosX-1))#
We can use the Pythagorean theorem again on the top. Also, pull out a #-1# from the #""^4# terms in the numerator.
#(sinXcosX -(sin^4X + cos^4X))/(sinXcosX(2sinXcosX-1))#
Split the #sin^4X# term into two #sin^2X# terms. Then we can use the Pythagorean theorem, #sin^2X = 1-cos^2X# to replace one of the #sin^2# terms. Do a similar action with the #cosX^4# term.
#(sinXcosX -(sin^2Xsin^2X+cos^2Xcos^2X))/(sinXcosX(2sinXcosX-1))#
#(sinXcosX -(sin^2X(1-cos^2X)+cos^2X(1-sin^2X)))/(sinXcosX(2sinXcosX-1))#
Multiply through the terms in the top parenthesis.
#(sinXcosX -(sin^2X-2sin^2Xcos^2X +cos^2X))/(sinXcosX(2sinXcosX-1))#
Once again Pythagorean theorem out the #sin^2X# and #cos^2X# terms.
#(sinXcosX -(1-2sin^2Xcos^2X))/(sinXcosX(2sinXcosX-1))#
Multiply the #-1# through the parenthesis in the numerator.
#( sinXcosX+2sin^2Xcos^2X-1)/(sinXcosX(2sinXcosX-1))#
Pull out a factor of #sinXcosX# from two of the terms in the numerator.
#( sinXcosX(1+2sinXcosX)-1)/(sinXcosX(2sinXcosX-1))#
Adding and subtracting a #1# inside the parenthesis is the same as adding #0#.
#( sinXcosX(1+2sinXcosX+(1-1))-1)/(sinXcosX(2sinXcosX-1))#
Combine the two #+1# terms in the parenthesis.
#( sinXcosX(2sinXcosX-1 +2)-1)/(sinXcosX(2sinXcosX-1))#
Now pull the #2# out. Remember to multiply by #sinXcosX#.
#( sinXcosX(2sinXcosX-1) + 2sinXcosX-1)/(sinXcosX(2sinXcosX-1))#
Finally we have a term in the numerator that is the same as the denominator. Split the addition terms in the numerator to get;
#(sinXcosX(2sinXcosX-1))/(sinXcosX(2sinXcosX-1)) + (2sinXcosX-1)/(sinXcosX(2sinXcosX-1))#
The first term simplifies to #1# and in the second term the #(2sinXcosX-1)#s cancel out.
#1+1/(sinXcosX)#
Now convert to #secX#and #cscX#
#1+secXcscX#