How do you verify that #f(x)=1/3x^3-2; g(x)=root3(3x+6)# are inverses?

1 Answer
Mar 30, 2017

#f(x)# and #g(x)# are inverses if #f(g(x))=x# and #g(f(x))=x#

Explanation:

If #color(blue)(f(x))=color(blue)(1/3x^3-2)#
and #color(red)(g(x))=color(red)(root(3)(3x+6))#

then
#color(white)("XXX")color(blue)(f(color(red)(g(x))))=color(blue)(1/3color(red)(g(x))^3-2)#

#color(white)("XXX")=color(blue)(1/3color(red)((root(3)(3x+6)))^3-2)#

#color(white)("XXX")=color(blue)(1/3 * color(green)((3x+6)) -2#

#color(white)("XXX")=color(green)(x+2) color(blue)(-2)#

#color(white)("XXX")=x#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and
#color(white)("XXX")color(red)(g(color(blue)(f(x)))=color(red)(root(3)(3color(blue)((1/3x^3-2))+6)#

#color(white)("XXX")=color(red)(root(3)(color(green)(x^3-6)+6)#

#color(white)("XXX")=color(red)(root(3)(color(green)(x^3))#

#color(white)("XXX")=x#