How do you verify the identity #(costhetacottheta)/(1-sintheta)-1=csctheta#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Narad T. Jan 17, 2017 See proof below Explanation: We need #cottheta=costheta/sintheta# #csctheta=1/sintheta# #cos^2theta+sin^2theta=1# #a^2-b^2=(a+b)(a-b)# Therefore, #LHS=(costhetacottheta)/(1-sintheta)-1# #=(costheta*costheta/sintheta)/(1-sintheta)-1# #=cos^2theta/(sintheta(1-sintheta))-1# #=(1-sin^2theta)/(sintheta(1-sintheta))-1# #=((1+sintheta)cancel(1-sintheta))/(sinthetacancel(1-sintheta))-1# #=(1+sintheta)/sintheta-1# #=(1+sintheta-sintheta)/sintheta# #=1/sintheta# #=csctheta# #=RHS# #QED# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 10222 views around the world You can reuse this answer Creative Commons License