How do you verify the identity #(sin^3beta+cos^3beta)/(sinbeta+cosbeta)=1-sinbetacosbeta#?

1 Answer
Jan 24, 2017

see explanation.

Explanation:

There are 3 approaches to verifying the identity.

• Manipulate the left side into the form of the right side

• Manipulate the right side into the form of the left side

• Manipulate both sides until a point is reached where they are
#color(white)(x)"both equal"#

Using the first approach.

#"left side "=(sin^3beta+cos^3beta)/(sinbeta+cosbeta)#

The numerator is a #color(blue)"sum of cubes"# and can be factorised in general as follows.

#color(red)(bar(ul(|color(white)(2/2)color(black)(a^3+b^3=(a+b)(a^2+ab+b^2))color(white)(2/2)|)))#

#"here " a=sinbeta" and " b=cosbeta#

#rArrsin^3beta+cos^3beta=#

#=(sinbeta+cosbeta)(sin^2beta-sinbetacosbeta+cos^2beta)#

The left side can now be simplified.

#((cancel(sinbeta+cosbeta))(sin^2beta-sinbetacosbeta+cos^2beta))/(cancel(sinbeta+cosbeta))#

#=sin^2beta-sinbetacosbeta+cos^2beta#

#"Using the identity " color(red)(bar(ul(|color(white)(2/2)color(black)(sin^2beta+cos^2beta=1)color(white)(2/2)|)))#

#"Then" sin^2beta-sinbetacosbeta+cos^2beta=1-sinbetacosbeta#

#"Thus left side = right side "rArr"verified"#