How do you verify the identity #sintcsc(pi/2-t)=tant#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Jan 17, 2017 see below Explanation: Left Hand Side: #sin t csc( pi/2 -t)=sint *1/(sin(pi/2 - t))# Use the formula #sin(A-B)=sinAcosB-cosAsinB# #=sin t * 1/(sin (pi/2) cos t-cos (pi/2) sin t)# #=sin t* 1/(1*cost-0*sint# #=sint * 1/cos t# #= sint / cos t# #=tan t# #:.=# Right Hand Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 4585 views around the world You can reuse this answer Creative Commons License