How do you write #625^(3/4)# in radical form?
2 Answers
May 28, 2016
Notice that
May 28, 2016
If you don't automatically know that
#color(blue)(625^"3/4")#
#= (600 + 25)^"3/4"#
#= (60*10 + 25)^"3/4"#
#= (120*5 + 25)^"3/4"#
#= (12*50 + 25)^"3/4"#
#= (24*25 + 25)^"3/4"#
#= (25^2)^"3/4"#
Remember that
#= 25^(2*"3/4")#
#= 25^("6/4")#
#= 25^("3/2")#
#= 25^(3*"1/2")#
#= (5^2)^(3*"1/2")#
#= 5^(2*3*"1/2")#
Remember that multiplication is commutative.
#= 5^(3*2*"1/2")#
#= (5*5*5)^(2*"1/2")#
#= (25*5)^(1)#
#= color(blue)(125)#