How do you write a polynomial with roots of –1, –2, and 3?

1 Answer
Mar 17, 2018

Answer:

#f(x)=x^3-7x-6#

Explanation:

#"Given a polynomial with roots, say"#

#x=a,x=b" and "x=c" then"#

#(x-a),(x-b)" and "(x-c)" are it's factors"#

#"and "f(x)=k(x-a)(x-b)(x-c)larrcolor(blue)"k is a multiplier"#

#"here "x=-1,x=-2" and "x=3#

#rArr(x+1),(x+2)" and "(x-3)" are the factors"#

#"let "k=1#

#rArrf(x)=(x+1)(x+2)(x-3)#

#color(white)(rArrf(x))=x^3-7x-6larrcolor(blue)"is a possible polynomial"#
graph{x^3-7x-6 [-10, 10, -5, 5]}