How do you write an equation of a ellipse with vertices (0,2), (4,2) and minor axis of length 2? Precalculus Geometry of an Ellipse Identify Critical Points 1 Answer Nallasivam V Dec 25, 2016 #(x-2)^2/4+(y-2)^2/2=1# Explanation: Answer link Related questions How do I find the points on the ellipse #4x^2 + y^2 = 4# that are furthest from #(1, 0)#? What are the foci of an ellipse? What are the vertices of #9x^2 + 16y^2 = 144#? What are the vertices of the graph given by the equation #(x+6)^2/4 = 1#? What are the vertices and foci of the ellipse #9x^2-18x+4y^2=27#? What are the foci of the ellipse #x^2/49+y^2/64=1#? How do I find the foci of an ellipse if its equation is #x^2/16+y^2/36=1#? How do I find the foci of an ellipse if its equation is #x^2/16+y^2/9=1#? How do I find the foci of an ellipse if its equation is #x^2/36+y^2/64=1#? How do you find the critical points for #(9x^2)/25 + (4y^2)/25 = 1#? See all questions in Identify Critical Points Impact of this question 10672 views around the world You can reuse this answer Creative Commons License