How do you write the equation #4=rcos(theta+pi/4)# in rectangular form?

1 Answer
Nov 19, 2016

The equation is #x-y=4sqrt2#

Explanation:

We use,

#cos(a+b)=cosacosb-sinasinb#

#cos(theta+pi/4)=costhetacos(pi/4)-sinthetasin(pi/4)#

#cos(pi/4)=sin(pi/4)=sqrt2/2#

The conversion from polar coordnates to cartesian coordinates is made with the following equations

#x=rcostheta#

and #y=rsintheta#

We can transform the above equation,

#4=rcos(theta+pi/4)=rcosthetacos(pi/4)-rsinthetasin(pi/4)#

#4=xsqrt2/2-ysqrt2/2#

#4sqrt2=x-y#