# How do you write the equation y+2=7/8(x-3) in standard form?

May 29, 2017

That equation in standard form is $y = \frac{7}{8} x - \frac{37}{8}$

#### Explanation:

First, you can distribute the $\frac{7}{8}$ to the $x$ and the $- 3$:

$y + 2 = \frac{7}{8} x - \frac{21}{8}$

After that subtract both sides by two:

$y + 2 - 2 = \frac{7}{8} x - \frac{21}{8} - 2$

$y = \frac{7}{8} x - \frac{21}{8} - \frac{16}{8}$

$y = \frac{7}{8} x - \frac{37}{8}$

May 29, 2017

$7 x - 8 y = 37$

#### Explanation:

$\text{the equation of a line in "color(blue)"standard form}$ is.

$\textcolor{red}{\overline{\underline{| \textcolor{w h i t e}{\frac{2}{2}} \textcolor{b l a c k}{A x + B y = C} \textcolor{w h i t e}{\frac{2}{2}} |}}}$
where A is a positive integer and B, C are integers.

$\text{rearrange " y+2=7/8(x-3)" into this form}$

$\Rightarrow y + 2 = \frac{7}{8} x - \frac{21}{8} \leftarrow \textcolor{red}{\text{ distributing}}$

$\text{subtract " 7/8x" from both sides}$

$y + 2 - \frac{7}{8} x = \cancel{\frac{7}{8} x} \cancel{- \frac{7}{8} x} - \frac{21}{8}$

$\Rightarrow y + 2 - \frac{7}{8} x = - \frac{21}{8}$

$\text{subtract 2 from both sides}$

$y \cancel{+ 2} \cancel{- 2} - \frac{7}{8} x = - \frac{21}{8} - 2$

$\Rightarrow y - \frac{7}{8} x = - \frac{37}{8}$

$\text{multiply through by } - 8$

$\Rightarrow 7 x - 8 y = 37 \leftarrow \textcolor{red}{\text{ in standard form}}$