How do you write the matrix #[(1, -1, -1, 1), (5, -4, 1, 8), (-6, 8, 18, 0)]# using the row echelon form?

1 Answer
Jul 10, 2018

Answer:

The matrix is #((1,0,5,4),(0,1,6,3),(0,0,0,0))#

Explanation:

Perform the row operations on the matrix

#A=((1,-1,-1,1),(5,-4,1,8),(-6,8,18,0))#

The pivot is in the first column of the first row

Eliminate the first column

#R2larrR2-5R1# and #R3larrR3+6R1#

#((1,-1,-1,1),(0,1,6,3),(0,2,12,6))#

Find the pivot in the second column and in in the second row

Eliminate the second column

#R1larrR1+R2# and #R3larrR3-2R2#

#((1,0,5,4),(0,1,6,3),(0,0,0,0))#