# How do you write the point slope form of the equation given (-6,-2) and m=3?

Jul 9, 2017

$y + 2 = 3 \left(x + 6\right)$

#### Explanation:

The point-slope form of a line is $y - {y}_{1} = m \left(x - {x}_{1}\right)$. Substitute the given values into the equation.

$y - {y}_{1} = m \left(x - {x}_{1}\right)$

$y - \left(- 2\right) = 3 \left(x - \left(- 6\right)\right)$

$y + 2 = 3 \left(x + 6\right)$

Jul 10, 2017

$y + 2 = 3 \left(x + 6\right)$

#### Explanation:

$\text{the equation of a line in "color(blue)"point-slope form}$ is.

$\textcolor{red}{\overline{\underline{| \textcolor{w h i t e}{\frac{2}{2}} \textcolor{b l a c k}{y - {y}_{1} = m \left(x - {x}_{1}\right)} \textcolor{w h i t e}{\frac{2}{2}} |}}}$
where m represents the slope and $\left({x}_{1} , {y}_{1}\right)$ a point on the line.

$\text{here " m=3" and } \left({x}_{1} , {y}_{1}\right) = \left(- 6 , - 2\right)$

$\Rightarrow y - \left(- 2\right) = 3 \left(x - \left(- 6\right)\right)$

$\Rightarrow y + 2 = 3 \left(x + 6\right) \leftarrow \textcolor{red}{\text{ in point-slope form}}$