How do you write #x^(9/4)# as a radical form?

2 Answers
Feb 10, 2016

#x^(9/4)# is #root(4)(x^9)#.

Explanation:

The numerator denotes the actual exponent, like #x^2#. Therefore, we so far have #x^9# . Now the denominator denotes the numbered root of #x#. So, #x^(1/4)# would be #root(4)(x)# . Therefore, #x^(9/4)# is #root(4)(x^9)#.

And we are done.

Feb 13, 2016

#x^(9/4)=root(4)(x^9)#

Explanation:

Remember the formula #color(blue)(x^(a/b)=root(b)(x^a)#

Substitute ans find the answer... :)