How to calculate this? #lim_(n->oo)sum_(k=1)^n(2k+1)/(k!)#

2 Answers
May 29, 2017

#3e-1#

Explanation:

#sum_(k=1)^n(2k+1)/(k!)= 2sum_(k=1)^n1/((k-1)!)+sum_(k=1)^n 1/(k!)#

so #lim_(n->oo)sum_(k=1)^n(2k+1)/(k!) = 2e+e-1=3e-1#

May 29, 2017

#lim_(n->oo) sum_(k=1)^n (2k+1)/(k!) = 3e-1#

Explanation:

First we note that by the distribute property of the sum:

#sum_(k=1)^n (2k+1)/(k!) = 2sum_(k=1)^n k/(k!) + sum_(k=1)^n1/(k!) = 2sum_(k=1)^n 1/((k-1)!) + sum_(k=1)^n1/(k!)#

In the first sum change #k-1= j# so that for #k=1,2,...,n# we have that #j=0,1,...,(n-1)#:

#sum_(k=1)^n (2k+1)/(k!) = 2 sum_(j=0)^(n-1) 1/(j!) + sum_(k=1)^n1/(k!)#

we can add and subtract the terms required to make the sums over the same indeces, that is the term for #j=n# in the first and the term for #k=0# in the second:

#sum_(k=1)^n (2k+1)/(k!) = 3sum_(k=0)^n1/(k!) -1-1/(n!)#

We know that the MacLaurin series for the exponential function is:

#e^x = sum_(k=0)^oo x^k/(k!)#

so for #x=1# and by the definition of the sum of a series:

#e= lim_(n->oo) sum_(k=0)^n 1/(k!)#

So:

#lim_(n->oo) sum_(k=1)^n (2k+1)/(k!) = 3 lim_(n->oo) sum_(k=0)^n1/(k!) -1 - lim_(n->oo) 1/(n!) = 3e-1#