How to find #f'(0)# where #f(x)=root(5)(x^3-tan^3x)#?

2 Answers
Jul 16, 2017

#f'(0)=0#

Explanation:

As #f(x)=root(5)(x^3-tan^3x)=(x^3-tan^3x)^(1/5)#

hence #(df)/(dx)=1/5(x^3-tan^3x)^(-4/5)xx(3x^2-3tan^2xsec^2x)#

and #f'(0)=0# #-># as #0^3-tan^3 0=0#

Jul 17, 2017

See below.

Explanation:

#lim_(x->0)d/(dx)root(5)(x^3 - tan^3x)#

#d/(dx)root(5)(x^3 - tan^3x)=(3 (x^2 - sec^2xTan^2x))/(5 (x^3 - tan^3x)^(4/5))#

and for small #abs(x)# we have

#(3 (x^2 - sec^2xTan^2x))/(5 (x^3 - tan^3x)^(4/5)) approx 3/5(x^2-sin^2x)/(x^3-sin^3x)^(4/5)=3/5((x+sinx)(x-sinx))/((x-sinx)(x^2+xsinx+sin^2x))^(4/5) = #

#(3/5)((x^2)/(x^3)^(4/5))((1+sinx/x)(1-sinx/x))/((1-sinx/x)(1+sinx/x+sin^2x/x^2))^(4/5)#

and for small #abs(x) # we have

#(3/5)((x^2)/(x^3)^(4/5))((1+sinx/x)(1-sinx/x))/((1-sinx/x)(1+sinx/x+sin^2x/x^2) )^(4/5)approx (3/5)1/x^(2/5)(2(1-sinx/x))/((1-sinx/x)^(4/5)3^(4/5))=2(3/5)3^(-4/5)((1-sinx/x)^(1/5)/x^(2/5))=#
#=2(3/5)3^(-4/5)((1-sinx/x)/x^2)^(1/5)#

Now

#lim_(x->0)d/(dx)root(5)(x^3 - tan^3x)=lim_(x->0)2(3/5)3^(-4/5)((1-sinx/x)/x^2)^(1/5)=2(3/5)3^(-4/5)(1/6)^(1/5)=2^(4/5)/5#

NOTE:

#(1-sinx/x)/x^2 approx (1- (x-x^3/(3!)+ cdots)/x)/x^2#